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Abstract. The initial-value problem is studied for two models of gauge field theory in the 
presence of arbitrary external sources. The non-Abelian SU(2)  Yang-Mills theory with a 
vanishing external charge J: = 0 allows for a clear distinction of the gauge field degrees 
of freedom into dynamical and non-dynamical ones. The case of general external sources 
J; introduces new dynamical quantities-Lagrange multipliers 0''. Thus a modified 
Lagrangian has been taken as a starting point. A similar analysis is carried out for an 
Abelian model of scalar electrodynamics. In all three cases time evolution along classical 
equations of motion imposes no restriction on external sources and the dynamical degrees 
of freedom can take almost arbitrary initial values. 

1. Introduction 

The present status of gauge field theories seems to be twofold. On the one hand, it is 
accepted that they form (or can form) a field theoretical basis of the strong, weak and  
electromagnetic interactions [ 11 while, on the other hand, the calculation apparatus is 
still inadequate to describe the whole physics of these phenomena. One usually uses 
perturbation methods which are appropriate when couplings are weak+, and even in 
some more sophisticated approaches as the expansion around solitons [3] one does 
not depart from semiclassical approximation schemes. In these methods gauge fields 
can be studied either on the classical o r  the quantum level only after a choice of some 
gauge condition has been made. However, this introduces new problems. For example, 
in a non-Abelian case the covariant gauge condition leads to such complications as 
an  appearance of the Faddeev-Popov ghosts [4] or the Gribov ambiguity [ 5 ] .  

Actually those obstacles can be overcome with the help of external sources which 
are kept non-zero everywhere. The mere presence of the gauge non-invariant source 
terms removes singularities connected with gauge freedom. Thus either the path integral 
over all trajectories can be evaluated [6] or the canonical path-integral quantisation 
can be carried out unambiguously [7]. 

Different aspects of gauge field theories coupled to external sources has been 
already studied by several authors (for the latest references, see [SI). However, in 
most cases, the domain of non-zero sources has been restricted to either finite regions 
or  separate points. We stress that in the source-free regions all problems mentioned 
earlier reappear. Thus we will consider external sources which vanish nowhere (with 
a possible exception at the spacetime infinity). This makes things look different. 

t In the lattice formulation of gauge field theories the strong coupling regime has been developed [2]. 
However, its continuous limit seems to be neither reliable nor straightforward. 
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We are able to find a system of consistent equations of motion for dynamical 
degrees of freedom for the classical SU(2) Yang-Mills theory. This can be accom- 
plished by the help of a proper parametrisation of gauge fields AY. This way the 
Cauchy problem for the non-Abelian gauge fields with arbitrary external sources will 
have a unique solution if some solvability conditions are satisfied. These conditions 
which are to be imposed on the gauge field potential are not very restrictive and should 
not be confused with any non-linear or  implicit external current conservation law. We 
stress that there are no dynamically induced restrictions on external sources; even 
more, we find our analysis easier when they are of generic form. 

When the external charge J ;  is different from zero, then some new degrees of 
freedom become dynamical. They can be expressed as the Lagrange multiplier fields 
0" entering the Lagrange density and this leads to the modified equations of motion. 
The dynamical degrees of freedom are found easily and their initial-value problem 
can be solved unambiguously. Furthermore, in some class of possible initial values, 
it is shown that this modified system is equivalent to the naive Yang-Mills one. 

Our paper is organised as follows. First we will consider a simple case of external 
sources arbitrary current J p  and will solve the Cauchy problem for the SU(2) Yang- 
Mills fields coupled to such a source. Then we will turn to the generic case of J t  and 
will carry out the same analysis. Finally our results will be discussed and some still 
unsolved problems will be pointed out. In the appendices we will sketch some proofs 
omitted throughout the main presentation and we will analyse an  Abelian model of 
gauge field theory-the scalar electrodynamics with external sources. 

2. The SU(2) Yang-Mills fields coupled to external currents JY 

First we would like to explain our motivations for the choice of the case presented. 
The SU(2) Yang-Mills field theory is a simple system which possesses all basic 
ingredients of other non-Abelian models. Also, there is a possibility of introducing a 
convenient parametrisation of gauge field potentials A t  and external currents J E .  
Thus we are able to classify arbitrary J t  in terms of the gauge group and the Lorentz 
group invariants. We can also divide arbitrary A ;  into dynamical and  constrained 
degrees of freedom. 

For the sake of clarity of our presentation we will reach our goal in two steps: first, 
we will explain our way of reasoning in a simpler case when J ;  = 0, and later we will 
attack a generic case. 

The system under consideration is described by the Lagrangian density: 

L = -$FaFYFaL, - A: J" (1) 
where 

F;,=a,AU, - a , A ; - t g ~ " ~ ' A ~ A t .  

Now we can use variational principles in order to arrive at the Lagrange-Euler equations 
of motion: 

D ; ~ F ~ W  - J"'  = 0 ( 2 a )  

D ; " F ~ ;  = o ( 2 b )  

where: 

D;h = a a h a ,  +gE"'hAL. 
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In  the vacuum case JP = 0, equations ( 2 a )  and ( 2 b )  form a starting point for the 
dynamical analysis. However, due to a gauge symmetry freedom those equations are 
singular-the second time derivative of A," does not appear at all. Usually this difficulty 
is cured by a gauge condition imposed on the dynamical AY fields. Then a value of 
A,, is given by equation ( 2 b ) .  

For non-zero external current we have a different situation-the consistency 
(integrability) condition of ( 2 a )  and ( 2 b )  is no longer trivial. 

D P ' J J ~  = 0. (3) 

Hitherto this condition has been interpreted as a kind of 'generalised' (non-Abel ian)  
current conservation law [8], e.g. only those currents J :  which fulfil ( 3 )  could be 
consistently coupled to the Yang-Mills system. This reasoning originates either in the 
Abelian counterpart of ( 3 ) :  

d , J , = O  

which no doubt constrains J , ,  or in an  expansion in powers of the coupling constant 
g. However we heavily stress that ( 3 )  should be treated non-perturbatively and then 
things will change considerably. 

First we introduce a proper description of arbitrary external currents J : ( x )  by 
means of two symmetrical matrices: 

K U h ( x )  := J ~ ( x ) J ~ ( x )  ( 4 a )  

L, , (x):= JP(x)J; (x ) .  ( 4 6 )  

Evidently the matrix K and its eigenvalues are the O(3) group invariants while L and 
its eigenvalues are the S U ( 2 )  group invariants. Furthermore, those eigenvalues coincide 
(for the proof see appendix 1 ) .  Thus they are simultaneously gauge and rotationally 
invariant. 

We may classify the possible J :  into three categories: 
(i) all eigenvalues of K (and L )  are non-zero, 
( i i )  one eigenvalue is zero, 
(iii) two eigenvalues vanish. 

The first two categories describe an external current which is intrinsically non-Abelian, 
while the third one corresponds to an Abelian current. We stress that this distinction 
is a local one. Thus it is possible that some JP(x)  fall into different categories in 
different regions of spacetime. 

In the following analysis we will suppose that JP belongs to the first category. Thus 
the following parametrisation of the gauge field potential is possible: 

A; = J:A,,(Suh + E ' ~ ~ N ' )  ( 5 )  

where L,A,, = A,L,, = a,,, Sah = Shu. 

appendix 1 )  
Now if we plug this formula into ( 3 )  then we will easily find that (for details see 

(6) U -  N - - ( 1 / 2 g ) d  , J "  I .  

This way three degrees of freedom of gauge field potential are 'frozen' by the covariant 
conservation law (3). In contrast, the symmetric matrix Sah is unconstrained and 
dynamical. 
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We can rewrite our equations of motion ( 2 a )  in terms of Sah and N".  For the sake 
of clarity we will not go into all details here-we will just show what kind of dynamics 
is described by them. Thus we will be interested in the leading terms (with A, and 
A,) while the other terms will be omitted as non-leading ones and marked by dots. 
In such an  approximation ( 2 a )  is 

Ap-DpbA,"+ . . . =  0 ( 2 0 ' )  
and after introducing ( 5 )  it gives two separate equations for Sub and N " :  

2 s a b  - ( ~ p a , A , h +  ~ f a , A , " )  - g [ E a d i ( s d h +  E d h e ~ e )  

+ ehdl(Sda + e d a e N e ) ] A ; + .  , . = 0 ( 7 a )  

~ N " - E " ~ ~ J ~ ~ ~ A ~ - ~ ( S ~ ~ ~ ~ ~  - S " ' + e u L h N h ) A ~ + .  . . = O .  ( 7 b )  
Furthermore from equation (6) we find that N" is no  longer a leading term. Thus we 
should omit it in our leading derivative approximation. In such a way we obtain a 
dynamical equation for A,": 

MabA,h+. . . = O  (8) 

(8') 

where M u h  is a linear differential operator: 
M l l b  :=&ab' J , d , + g ( S " G a h - S a h + ( 1 / 2 g ) ~ u b L d , J ~ ) .  1 

Now we will anticipate our future discussion of the invertibility (non-singularity) 
of M and say that we can solve (8) for A,". Accordingly we are in a position to impose 
the Cauchy problem. Let us suppose that, at the initial moment of time (at the spacelike 
surface) t = t o ,  the initial values of Sub, Sub, A," are given by arbitrary C2 functions 
(of spatial coordinates). In order to reproduce these quantities at any later moment 
t > to we must have some prescription for Sub and A,. Now it presents no difficulty, 
because we can read them from ( 7 a )  and (8), respectively. However, these equations 
may be inconsistent-we should find their conditions of integrability. 

First we observe that 

D ; ~ D ; F ' @ ~  D , " ~ D ~ F ; ,  ( 9 )  

which is another form of a well known identity: 
D ; ~ D ~ ~ ' F ~ ~ ~  = 0. 

Then, from the dynamical equations for Sub and A," ( 2 )  and the constraint for N u  (3) 
we find that the LHS of ( 8 )  vanishes. Thus we conclude that 

DghGb = 6" +geah'A,hGL = 0 

G" := D P ~ F ~ ~  = ( D ~ ) ~ ~ A ;  - D;";. 

(10) 

(10') 

where 

This equation is the integrability condition for our basic equations ( 2 a )  and (3). 
Due to its form (of a dynamical equation for G " ) ,  it will not hinder our previous 
analysis at all. We see that there are two equivalent possibilities for the evaluation of 
G " ( t )  for arbitrary t .  Firstly, we can calculate G'(to) by means of (10') and then 
evolve it according to (10). Secondly, we can use the prescription (10') for any t .  In 
any case we must evaluate the truly dynamical quantities Sub, Soh, A". Thus, from the 
practical point of view the first routine seems to be useless. However, in some cases 
it can give very promising results. For example, if G" vanishes at to then it will vanish 
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at any later moment t > to if only A{ remains regular during the period ( t o ,  t ) .  This 
property is a local one-it concerns a particular point x. Thus, if we impose that G" 
vanishes everywhere at to then we will obtain that it vanishes everywhere at any later 
t > t o .  

The imposition of any condition on initial values of dynamical variables diminishes 
a number of the independent initial degrees of freedom. In our case we may interpret 
the condition G"(to) = O  as an equation for A,"(to): 

( D:)"bA,h = DyhAF. (11) 

Now we have two differential (in three-dimensional space) equations (8) and (1 1) 
which should be solved. First let us suppose that at every point of spacetime the third 
spatial coordinate of external current J ;  can be transformed by a regular gauge 
transformation into the form 

53" = J3S"3.  (12) 

This supposition is valid since we have limited our discussion to category (i)  of external 
currents for any smooth J y  . 

Further let us take some spacelike surface z = zo and impose the following conditions 
for A,": 

M x ,  Y, 20, t )  = ( P a ( - %  Y,  t )  

Y, zo, t o )  = (P3(x, Y ) .  

a = 1,2 (13a) 

(136) 

At this surface (8) becomes 

J 3 a 3 A ; +  g(S" - SI1)@' + g(-SI2+ ( l/2g)aiJ;)@' 

+ g( -SI3 - ( 1/2g)diJ;)A;+. . . = 0 

-J,d,A:,+ g(S"" - s22)qb2+ g(-SI2- ( 1/2g)aiJ;)@' 

+g(-s23+(1/2g)a,Jj)A;+. * . = o  (14b) 

(14c) g ( S "  - S33)Ai+ g(-SI3+ (1/2g)a,Jf)@l+ g(-S23 - (1/2g)a,J:)@*+. . . = 0. 

We have left non-leading terms containing @ '  and G 2  in order to visualise the symmetry 
of these equations. This symmetry shows that at (12) we could specify a different 
direction in colour space as well. 

Now we may employ (14c) to find Ai(x, y ,  zo, t )  if only the following condition is 
satisfied at the surface zo: 

SI I + s2' f 0. (15)  

We may substitute this quantity into (14a) and (146) in order to evaluate a,A; and 
&AA, respectively. These derivatives and (13a) will allow us to calculate AA and Ai 
on the surface 

z = z + A z  

where Az is infinitesimally small. At this new surface the whole procedure may be 
repeated if the condition (15) is satisfied. Thus we see that, if (15) is satisfied 
everywhere, then (8) may be solved unambiguously. 
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Furthermore we would like to make a similar 'recurrence' analysis of another 
differential equation ( 1 1 ) .  We plan to solve it at an  initial time t o .  Thus we may 
determine the values of A,"(x, y ,  zo ,  to)  from (13a)  and (13b) .  However, this will not 
d o  enough here because we should also know the values of 

&Aoa(X, y, zo, t o )  = X u ( . %  Y ) .  ( 1 6 )  

Now we may write ( 1  1 )  in a simplified form: 

(a i suh  + 2geuChA;a3)A~  + . . . = 0 

where, exceptionally, dots stand for terms other than &A," and &A,". Clearly the 
recurrence procedure can be carried out only if all species will stay regular-no special 
restrictions are to be put on them. 

Accordingly, A:(x,  y ,  z, to)  and A,U(x, y,  z, to) can be evaluated from ( 1 1 )  and (8), 
respectively. We want to remind ourselves that equation ( 1  1 )  will be automatically 
satisfied for any later t > to if the system evolves according to the dynamical equations 
( 2 a )  and the constraint (3). Thus we are not forced to solve ( 1 1 )  for any time t and 
(13a) ,  (13b)  and (16)  form a set of sufficient boundary conditions. 

We now turn to the truly dynamical quantities and find that they need initial-value 
conditions 

(17a)  

(17b)  

S U b ( X ,  y, z, t o )  = T U b ( X ,  y, z )  

S U b ( x ,  y, Z,  to) = hah(x ,  y, z ) .  
At last we may formulate a final conclusion that, if we take ( I  7 a )  and ( 1 7 6 )  as  

the initial conditions for Sah and (13a)  and (13b)  and (16)  as the boundary conditions 
for A,", then our dynamical system governed by equations ( 2 a )  and ( 3 )  is equivalent to 
a system governed by primary (Lagrange-Euler) equations ( 2 a )  and ( 2 b ) .  We stress 
that we have no limitations on J p  . On the contrary, we need it in a general non-singular 
form. 

3. Generic external currents JE 

In the previous section we have limited arbitrary external currents to those with a zero 
external charge J :  = O .  Now we would like to release this restriction. However, the 
case of generic J l  brings new complications. Evidently the antisymmetric product 

j U  + j h  J' A j d  P = 0 ( 1 8 )  
vanishes identically for the SU(2) gauge group because there are only three directions 
in the colour space. Thus we may define a Lorentz vector n,: 

n, := Eh'' &,"A,J:J:J; (19a)  

n,Ju' = 0. (19b)  

which is orthogonal to J l :  

A colour-invariant symmetric matrix L,,,: 

L,, := J l  J :  

has a zero eigenvalue with n, as an eigenvector: 

L,, n, = 0. 
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Accordingly, L,, is not invertible and we cannot naively generalise the parametrisation 
(5) by changing three-dimensional space indices to four-dimensional ones. In  fact, an  
analogous parametrisation can be done. However, in our presentation it is of no help. 

At any spacetime point, due to a 'constraint' relation (19b) for generic JE we may 
always take three of them as independent colour vectors. Thus in some regions we 
may find that JY vanishes and  in other regions we may encounter J ;  = 0. This possibility 
presents a serious problem because no Lorentz transformation can bring these two 
local conditions into a global one. In such a case we should analyse those two regions 
separately. However, there is an  interesting case of generic JE which we can study 
without the complications mentioned. We may suppose that, in spite of the non-zero 
external charge J : ,  the external current JP is intrinsically non-Abelian-it belongs to 
category (i). 

Now we propose to make a small modification of our starting point and we will 
take the following Lagrangian density: 

(21) L = - ~ F ~ ~ J Y F "  ,U + A; J W  + ~ a ~ a h  J ~ F  

where Q" plays the role of the Lagrange multipliers. 
We can easily arrive at the Lagrange-Euler equations of motion: 

Dah, F e ,  + J p  - gsahLQhJ: = 0 

DfhFjb- J:+gsabcQhJ;= 0 (22b) 

D;'J'+ = 0. (22c) 

Furthermore, we should find a consistency condition for the above system of differential 
equations-this can be done in a few lines and the result is 

 ah^ j h ~ ~ ; *  Q* = 0. (23) 

We see that, if the Lagrange multipliers Q" are identically zero, then our system of 
Lagrange-Euler equations (22a) and (22b) would be equivalent to the naive Yang-Mills 
equations. However, as it will turn out later, if we keep Q" fields as independent 
degrees of freedom the analysis will be simpler, especially telling dynamical degrees 
of freedom from non-dynamical ones. We expect that the naive Yang-Mills Lagrangian 
is not correct for the case of arbitrary external currents if the external charge is non-zero. 
For example, a canonical path integral quantisation leads to a singular and Lorentz 
non-invariant result [7]. Accordingly we will not refer to naive equations any longer 
and  we will treat (22a),  (22b) and (22c) as rhe physical primary equations of motion. 

In order to integrate consistently the primary equations of motion we have to solve 
their integrability condition (23) simultaneously. Due to (22c) we may rewrite (23) in 
a n  equivalent form: 

D ; ~ ( & ~ ~ * J ; I Q ~ )  = D ; ~ ( & ~ ~ * J :  0')). (24a) 

Thus one part of Q" (orthogonal to J g )  is dynamical, while the other one (parallel to 
J : )  is constrained by the equation 

E a h c ~ : ~ : ~ f d ~ d  = 0. (24b) 

This observation is important because it shows the possibility of non-zero solutions 
for Q". 
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Before we proceed further let us suppose that the external charge is a smooth 
function which can be transformed to the form 

Jg = pSa' (25) 

by means of a regular gauge transformation (rotation in colour space). Due to our 
previous discussion the spatial coordinates of external current belong to category ( i ) .  
Thus again we may parametrise A: by Sub and N u :  

A: = J ; A , ( S " " +  E'"'N'). ( 5 )  

Dah' F e ,  + Jp - geah'QhJ: = 0 

D;" jh'* = 0 (22c) 

Now we take the following equations as the independent 'equations of motion': 

(22a) 

(23) &uh< J hp DfidQd=O. 

First we will analyse the constraint equations ( 2 2 c )  and notice that AA and Ai are 
given by 

A A = - l / p  ( 2 N 2 - l / g d , J f )  (260) 

(266) A i =  l / p  ( 2 N '  - l / g d ,  J t )  

for non-zero external charge, while N 3  is constrained by 

N 3  = ( 1 / 2 g ) ( p  - d i  J:). 

There is another constraint which we should solve-(246). Due to our choice of 
J :  (25) and to the parametrisation ( 5 ) ,  this equation has the following form: 

(S" + SZ2)Q3 = -(SI3+ N Z ) Q '  - ( S 2 3  - N ' ) Q 2 +  l / g ( J f d i Q '  - JtdiQ') .  ( 2 4 6 ' )  

Thus, if the condition 

SI1+ SZ2 # 0 

is satisfied at every point, then we will be able to express Q3 in terms of dynamical fields. 
Dynamical equations for Q' and Q2 can be easily obtained from (23): 

p [ Q '  + g ( A i Q 3  - AiQ2)l 
= g ( S "  + S 3 3 ) Q 2 +  g ( S "  - N 3 ) Q '  + g ( S Z 3 +  N ' ) Q 3  

+ J j d , Q '  - J f d , Q 3  

- p [ Q 2 + g ( A i Q '  -A&?')] 

= g (  s22 i S33)  Q ' + g (S" + N3) Q' + g (  SI3 - N 2 )  Q3 

+ J f d , Q 3  - Ji8,Q'. 

We have left all terms written down explicitly in order to visualise how another choice 
of J :  would change this procedure into a different one. Always, those directions in 
the colour space which are orthogonal to J :  will be dynamical, while those parallel 
to J :  will be constrained. This proves our earlier statement based on equations (24a) 
and (246). 



Cauchy problem for gauge jields 4069 

In further analysis we will use our leading derivative approximation again. Thus, 
from ( 2 2 a )  we will obtain dynamical equations for Sah, N '  and N': 
2Sah - ( J Y S  h 3  + Jhsa3)JiAi - g[  cad3(  Sdh + cdheN')  

+ E ~ ~ ' ( S " + E ' ' ~ ~ N ~ ) ] A ; + .  , . = O  (29a)  
2 N a  - E a h 3 J ~ J i A ~ _ g ( S h h ~ a 3 - S a 3 + ~ a 3 h N h ) A ~ + ,  . . = O  for a = 1,2. (29b)  

Due to the constraint (26c), N' is not a leading term and the appropriate equation 
gains a form 

g(S"  + S")Ai+.  . . = 0 (29c)  
and we have a dynamical equation for Ai only if the previous condition (27)  is met 
everywhere. 

Accordingly, we have found true equations of motion for any unconstrained 
quantity. However our system of equations (22a) ,  (22c)  and ( 2 3 )  can be integrated 
consistently if their integrability condition is satisfied for every t :  

D , " ~ G ' ~  = 0 (30)  

( 3 0 a )  

where G'" stands for 

G'" := DYhFFo-p6"3+gp~ab3Qh = (D:)ahAoh-DqhAF-pSa3+gp~ah3Qh. 

Here we have the possibility to keep G'" identically equal to zero everywhere only 
if we force it to vanish at an  initial surface t = to.  First we plan to calculate Ai from 
G'": 

[ d f  - g2(AtAt  + A f A f ) ] A ; + .  . . = 0. 

Ai(x,  Y ,  zo,  t o )  = d x ,  Y )  

J 3 4 ( X ,  Y ,  zo, to) = T ( X ,  Y )  

( 3 1 a )  

(32a)  

(326)  

Thus we have to impose some boundary conditions. For example, if we take 

then ( 3 1 a )  may be integrated for the surface t = to.  Further, from G'* and G" we may 
evaluate Q' and Q', respectively: 

(316)  

( 3  1 c) 

2 2 h  h 2 h ' h  Q ' = ( l l g ~ ) ( ( D i )  Ao-Di  A i )  

Q' = - ( l / g p ) (  (D?)"A; - Dt 'A:) .  
Thus we are at the end of our analysis and  we may formulate the Cauchy problem. 

At the initial surface t = t o ,  dynamical quantities Sob, N ' ,  N 2 ,  Sah, N ' ,  N' are given by 
arbitrary C' functions of spatial coordinates. The boundary conditions (32a)  and (32b)  
imposed on Ai allow for  its evaluation at t o ,  while Q' and Q' can be calculated from 
(31b)  and (31c) .  All those quantities are to be evolved for any t > to by means of 
appropriate equations of motion (29a) ,  (29b) ,  (29c ) ,  (28a)  and (28b) .  The non-dynamical 
degrees of freedom AA, A i ,  N 3 ,  Q3 should be calculated from (26a) ,  (266) ,  (26c)  and 
(24b') .  Such a dynamical system will be equivalent to that governed by the primary 
Lagrange-Euler equations of motion (22a) ,  (22b)  and (22c) .  

4. Conclusions 

In this paper we have presented a detailed analysis of the Cauchy problem for gauge 
field theories coupled to external sources. Our  aim was to formulate this problem 
unambiguously for the general case of external sources. 
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We have succeeded in two cases of external currents coupled to the non-Abelian 
SU(2) Yang-Mills theory and  for the Abelian scalar electrodynamics (see appendix 
2). We have encountered no conservation law or any other limitation on external 
sources but we have found some conditions on the field variables. Fortunately, they 
are not very restrictive and  the dynamical fields can take almost arbitrary initial values. 
Still, a time evaluation of such systems can break down at some future time-thus our 
solution is only a local one. 

We can argue that our identification of dynamical equations of motion is self 
consistent by making a general observation. 

All dynamical degrees of freedom fall into two categories-they evolve either according 
to second-order (elliptic) orjrst-order equations of motion. The existence and uniqueness 
of solution fo r  the time period ( t o ,  t )  will come about according to the usual arguments 
only if the solvability conditions mentioned before will be met in that period of time. 

Here we would like to answer the inevitable objection that we have to solve a 
plethora of mathematical problems before stating that the Cauchy problem is properly 
formulated. We agree that the mathematical aspects of our reformulation of the 
initial-value problem may be non-trivial. However, the physical picture of the Cauchy 
problem is now clear. 

Further we would like to mention one important consequence of our considerations, 
namely that any adequate expansion scheme should impose no restriction on external 
currents at  any  level of approximation. In a future paper we will present a strong 
coupling expansion for the SU(2) Yang-Mills theory [9] which meets the above 
requirement. 

In any case we have treated ‘a non-linear conservation law for external sources’ as 
a kind of gauge fixing condition induced by the mere presence of such sources. In 
the case of non-zero non-Abelian external charge, we have found that the Lagrange 
multipliers can develop non-zero values. 

Those unexpected features of gauge fields in the presence of non-trivial external 
sources can have some physical consequences. We stress that they are invisible by 
means of the ‘brute force’ or  perturbative methods used so far in an  exploration of 
gauge field theories. 

Finally we would like to express our strong conviction that similar analysis can 
also be carried out for other gauge groups like SU(3), SU(5) etc, though a different 
parametrisation may be useful. 
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Appendix 1.  On invariant characterisation of 59 and parametrisation of A ;  

We propose to analyse arbitrary external currents JP in terms of two symmetric matrices: 

K a b  = J p J p  (4a) 

L,  = J p  JT ( 4 b )  
arguing that their coinciding eigenvalues are both rotationally and gauge invariant. 
Here we would like to prove this statement. 
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First, from the definitions ( 4 a )  and (4b)  we derive the following equalities: 

tr ( K a h )  = tr ( L , , )  

tr ( K u h K h ' )  = tr ( L , ,  L I L )  

tr ( K U h K h ' K c d )  = tr (L , ,L , , ,  Lk, , , ) .  

( A l . l a )  

( A l . l  b )  

( A l . l c )  

Of course, one can write down equalities of traces for higher powers of K U h  and L,) .  
However, for our purpose the ones given above will be enough. 

Let us denote eigenvalues of K u h  by x i ,  x2, x?, and those of L,, by A , ,  A ? ,  A ? .  Now 
equations ( A l e l a ) - ( A l . 1 ~ )  look like 

X I  + x,+ x3= A ,  + A 2 +  A 3  ( A l .  1 a ' )  

x:+x:+x:  = A:+A:+A: ( A l .  1 b ' )  

x:+ xi+ = A: + A ? , +  A:. (Al .1  c') 

Next we introduce two useful functions: 

f( z )  := (XI  - z ) (  x2 - z ) (  xi - z )  

g ( z )  := ( A ,  - z ) ( A ~ - z ) ( A ~ -  z ) .  

( A 1 . 2 ~ )  

(A1.2b) 

By a simple calculation one may find that f ( z )  can be expressed as 

f ( z )  = x,x>x3 - z ( x l x * +  x,xi+ X 2 X 3 ) +  z 2 ( x ,  + x2+ X i )  - z i  

= i [  ( X I  + x 2  + x3)3 + 2(  x: + x: + xi) - 3( x: + x: + x:)( x 1 + x2 + XJ] 
+ z / 2 [  x: + x: + x: - ( X I  + x 2  + x3)7 + z2( XI + x2 + x3) - z3.  (A1.3) 

A similar expression should be written for g ( z ) :  x, is to be exchanged by A ,  only. 
Thus, from (Alela')-(Al .1c')  we notice that those functions are equal: 

f ( z )  = d z ) .  (A1.4) 

Accordingly, whenever z is equal to some x, t hen f (x , )  = O  but due to (A1.4) g ( x , )  = O  
also. However, from (A1.2b) we see that g ( z )  vanishes only at z = A,. Thus we must 
conclude that 

X I  = A f ( l ,  (A1.5) 

where P ( z )  stands for some permutation of i. 
Further, from (4a)  one sees that x, is rotationally invariant, while from (4b) one 

sees that A ,  is gauge invariant. Now due to equation (A1.5), one concludes that these 
eigenvalues are both rotationally and gauge invariant. 

We may define a class of external currents JP by specifying the number of non-zero 
eigenvalues. If we take the case when all eigenvalues are non-vanishing then 

det (L!,) # 0 (A1.6) 

and evidently we may define a reciprocal matrix A,) :  

Ltj Ajk = S i k .  (A1.7) 

This allows us to introduce the following parametrisation for any gauge field A:: 

(A1.8) 
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where 

sah = $ ( A : J : + A ; J ~ )  

N a  +ah< A : J : .  

J ~ A , ,  J ;  = xah  
In order to prove (6) we need to show that a colour matrix X a h :  

is an  identity matrix. Let us multiply X a h  by Kh‘ and use (A1.7): 

XahKh‘  = JpA,J;J iJ;=  JyA, ,L , ,J;=JpJ: .  

Thus 
X a h K h c  = 

Further, due  to the non-singularity of K a h :  

det (K“’)  = det ( L , )  f 0 

we conclude that 
X a h  = 

(A1.9) 

(Al .  10) 

( A l . l l )  

Appendix 2. Scalar electrodynamics with external sources 

To broaden our view on general features of the gauge fields with external sources we 
would like to present here an  Abelian model. Our aim is to show that, if theory is 
non-linear, then arbitrary external sources can be coupled unambiguously and the 
Cauchy problem can be properly formulated. We propose to consider a system of 
complex scalar fields 4, +* and vector field A,  with the Lagrangian density 

(A2.1) 

where fPy = a,A, --d,A,, 0, =a,  +ieA, and F i s  some polynomial (quadratic for a 
renormalisable model). We suppose that J,,  7 and T *  are given by arbitrary smooth 
functions and we demand that 171’ is non-zero everywhere. 

From (A2.1) we may easily obtain appropriate Lagrange-Euler equations of motion: 

a”f,y-ie(+*D,4-4(D,+)*)+J,=0 ( A 2 . 2 ~ )  

L =  -‘f 4 I * y  f ’” + lD,+c#~/~+ F[I 4 1’1 + +*T + 4 ~ *  +A,J’ 

( - W O ,  + 2 F’) 4 + 7) = 0 

(-DfiD,+2F’)*+*++* =o.  
(A2.2b) 

( A 2 . 2 ~ )  

Those equations have a consistency condition: 

ie(4*T-+T*)+dl*J, = O .  (A2.3) 

Thus we see that some part of the scalar degrees of freedom is constrained. In order 
to solve this equation explicitly we introduce the following parametrisation: 

( A 2 . 4 ~ )  

(A2.46) 

A,  = B, - l / e  a,6 ( A 2 . 4 ~ )  
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where 6 is the phase factor of scalar sources: 

77 = elBS (A2.5 a ) 

77* = e - 1 4  S. (A2.56) 

Introducing these new field variables into ( A 2 . 2 a ) - ( A 2 . 2 ~ )  we obtain a new form 

a’*b,, + e 2 B , ( a 2 + p 2 )  - ep’$,cy + J ,  = 0 ( A 2 . 6 ~ )  

- I b,, + e ’ Bo( cy ’ + p ’) - e/? 2, a + Jo = 0 (A2.66)  

(-a2+ e2B2+2F’)P -2eB’*a,cy - ea,Bpcy = 0 ( A 2 . 6 ~ )  

( - a 2 + e 2 B 2 + 2 F ’ ) a  +2eB’*a,p+ed,B’*/?+,s = O  (A2 .6d)  

of Lagrange-Euler equations: 

where 

AZ,B = Ad,B - Bd,A b,,,=d,B,-a.B, a‘ = #a,. 
Now the consistency condition (A2.3)  has a simple form: 

a,Jp + esp = 0 (A2.7) 

and  we see that our parametrisation of a scalar sector by means of two real fields is 
very convenient because equation (A2.7)  can be solved immediately: 

(A2.7‘) 

Accordingly the usually dynamical scalar field: p becomes ‘nailed to’ a definite 
function Po due to the presence of non-zero external source s. Of course, i f s  vanishes 
somewhere than (A2.7) degenerates to a true current conservation law: 

dpJp = 0. (A2.8) 

In our  further analysis we suppose that s # 0 everywhere. Thus Po is a well defined 
function. 

Because p is not a dynamical quantity so equation ( A 2 . 6 ~ )  should be interpreted 
as the dynamical equation for Bo: 

ecyB,,= -2eBoci +(-a’+e2B2+2F’)p, ,-ead,B, -2eB,d,a (A2.9)  

if only the dynamical scalar field a is non-zero. 
Now we turn to the Cauchy problem and take (A2 .6a) ,  (A2 .6d)  and (A2.9) as the 

equations of motion for dynamical fields B,, B,, and cy. Further, if p is given by a 
smooth function (A2.7’) then our system can be integrated consistently if the following 
condition holds: 

dog = 0 

where 

g =  -d,bio+e’B,(a2+p~)-epo’$oa+Jo 

(A2.10) 

(A2.10’) 

Thus g takes a constant value during the time evolution and we may make it vanish 
only if, at  the initial surface t = t o ,  B,, is given by 

( -a  + e’ cy + e’p i) B, = - epozoa + Jo . (A2.11) 
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However, solving for Bo involves some boundary conditions, so we propose to take at 
a spatial surface z = zo: 

(A2.12~1) 

(A2.12 b )  

I n  such a manner we have arrived at a dynamical system which is equivalent to that 
given by the primary Lagrange-Euler equations (A2.6a)-(A2.6d). 

B ( x ,  I', 20,  t o )  =Ax, Y )  

& B ( X ,  Y ,  zo, t o )  = Ax, Y ) .  

Finally we may formulate the Cauchy problem in the following way. 
(ii) B, ,  B , ,  CY, ci are given as arbitrary C' functions at the initial surface t = t o .  

(ii) Bo is given by (A2.11) at t o .  
( i i i )  The time evolution is governed by (A2.6a), (A2.6d) and (A2.9). 
(iv) The non-dynamical scalar field p is given everywhere by (A2.7'). 
This system will evolve smoothly until a vanishes somewhere. Thus we conclude 

Additionally, the dynamical scalar field CY must be non-vanishing. 

that, also in the Abelian case, the proposed solution is local. 
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